Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12216/100
Title: On the population median estimation using robust extreme ranked set sampling
Authors: Al-Omari, A.I. 
Al-Nasser, A.D. 
Issue Date: 2012
Journal: Monte Carlo Methods and Applications 
Abstract: In this paper, the robust extreme ranked set sampling (RERSS) scheme is considered for estimating the population median. The RERSS is compared with the simple random sampling (SRS), ranked set sampling (RSS) and extreme ranked set sampling (ERSS) schemes. A Monte Carlo simulation study is used to study the performance of the median estimator. It is found that RERSS estimators are unbiased of the population median when the underlying distribution is symmetric. Also, in terms of the efficiency criterion; the median estimator based on RERSS is more efficient than the median estimators based on SRS, ERSS, and RSS for symmetric and asymmetric distributions considered in this study. For asymmetric distributions, the RERSS estimators have a smaller bias. © de Gruyter 2012.
URI: http://hdl.handle.net/20.500.12216/100
DOI: 10.1515/mcma-2012-0002
Appears in Collections:Articles

Show full item record

SCOPUSTM   
Citations 50

1
Last Week
0
Last month
checked on Jun 19, 2018

Page view(s)

6
Last Week
0
Last month
3
checked on Jun 20, 2018

Google ScholarTM

Check

Altmetric


Items in Corepaedia are protected by copyright, with all rights reserved, unless otherwise indicated.