Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12216/267
DC FieldValueLanguage
dc.contributor.authorLa Torre, D.en_US
dc.contributor.authorMaki, E.en_US
dc.contributor.authorMendivil, F.en_US
dc.contributor.authorVrscay, E.R.en_US
dc.date.accessioned2019-01-10T12:15:33Z-
dc.date.available2019-01-10T12:15:33Z-
dc.date.issued2018-10-
dc.identifier.urihttp://hdl.handle.net/20.500.12216/267-
dc.description.abstractWe are concerned with the approximation of probability measures on a compact metric space (X,d) by invariant measures of iterated function systems with place-dependent probabilities (IFSPDPs). The approximation is performed by moment matching. Associated with an IFSPDP is a linear operator A: D(X) → D(X), where D(X) denotes the set of all infinite moment vectors of probability measures on X. Let μ be a probability measure that we desire to approximate, with moment vector g = (g0,g1,...). We then look for an IFSPDP which maps g as close to itself as possible in terms of an appropriate metric on D(X). Some computational results are presented. © 2018 World Scientific Publishing Company.en_US
dc.language.isoenen_US
dc.publisherWorld Scientific Publishing Co. Pte Ltden_US
dc.relation.ispartofFractalsen_US
dc.relation.issue5en_US
dc.relation.volume26en_US
dc.titleIterated function systems with place-dependent probabilities and the inverse problem of measure approximation using momentsen_US
dc.typeArticleen_US
dc.identifier.doi10.1142/S0218348X18500767-
dc.identifier.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85054887641&doi=10.1142%2fS0218348X18500767&partnerID=40&md5=029a85e7fe704fe5f30647003efdc9eb-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.deptDubai Business School-
Appears in Collections:Articles
Show simple item record

SCOPUSTM   
Citations

1
Last Week
0
Last month
0
checked on Sep 14, 2019

Page view(s)

1
Last Week
0
Last month
0
checked on Aug 5, 2019

Google ScholarTM

Check

Altmetric

Altmetric


Items in Corepaedia are protected by copyright, with all rights reserved, unless otherwise indicated.